Our Team > Our Academics > Prof Carmen Torres-Sanchez

Prof Carmen Torres-Sanchez

Our Academics

Loughborough University

Carmen received an MEng in Chemical Engineering from the University of Granada (Spain).  After a few years working in Brussels, sitting on the executive board of the European Confederation of Junior Enterprises, she decided to undertake a PhD in Mechanical Engineering, graduating in 2008 from Heriot-Watt University in Edinburgh.  Her PhD work has driven the development of a novel technique for the engineering and tailoring of functionalities and geometries within solid polymeric foams via controlled ultrasonic irradiation.

Carmen was a Research Fellow at the University of Strathclyde, Glasgow, from 2008 until 2010.  She then took up a lectureship position in Mechanical Engineering at Heriot-Watt University.  Carmen joined the Wolfson School of Mechanical and Manufacturing Engineering at Loughborough University in April 2013 as a Senior Lecturer. Prof Torres-Sanchez’s interest in the manufacture of porous materials whose internal architecture can be tailored to meet specific requirements (i.e. structural and biomimetic materials) has driven the development of a novel technique in the adjustment of cellular geometry of solid polymeric foams via controlled ultrasonic irradiation.

Dr Carmen Torres-Sanchez, a member of the Loughborough-RIED team, has been recently recognised for her contribution of an international standing in her work on multifunctional materials manufacturing. She has been promoted to Professor effective from May 1st 2023.

RIED Specific Links & Papers

View
View
  • Electrochemical removal of secondary roughness on selective laser melted titanium with an ethylene–glycol-based electrolyte (July 2023)

    Partially sintered satellite particles in scaffolds produced via Selective Laser Melting (SLM) create discrepancies between the as-designed and the as-manufactured properties (esp. porosity). These discrepancies impede direct comparison of manufactured parts performance to computer simulations. We propose anodic electrolysis using an electrolyte based on non-aqueous ethlylene-glycol TiCl4 (EthaTi) to remove the secondary roughness on titanium SLM-ed porous scaffolds. Post-processed gyroid scaffolds regained 10% porosity with respect to their as-manufactured value (65.20 ± 0.23%), which was close to the as-designed value (75.12%). Compared to other well-established electrolytes, this method is cost-effective, user-friendly and practical, as it requires shorter processing times, is temperature-stable and of gentler chemistry.

View
  • Multidimensional analysis for the correlation of physico-chemical attributes to osteoblastogenesis in TiNbZrSnTa alloys (October 2023)

    Abstract

    Data-enabled approaches that complement experimental testing offer new capabilities to investigate the interplay between chemical, physical and mechanical attributes of alloys and elucidate their effect on biological behaviours. Reported here, instead of physical causation, statistical correlations were used to study the factors responsible for the adhesion, proliferation and maturation of pre-osteoblasts MC3T3-E1 cultured on Titanium alloys. Eight alloys with varying wt% of Niobium, Zirconium, Tin and Tantalum (Ti— (2–22 wt%)Nb— (5–20 wt%)Zr— (0–18 wt%)Sn— (0–14 wt%)Ta) were designed to achieve exemplars of allotropes (incl., metastable-β, β + α′, α″). Following confirmation of their compositions (ICP, EDX) and their crystal structure (XRD, SEM), their compressive bulk properties were measured and their surface features characterised (XPS, SFE). Because these alloys are intended for the manufacture of implantable orthopaedic devices, the correlation focuses on the effect of surface properties on cellular behaviour. Physico-chemical attributes were paired to biological performance, and these highlight the positive interdependencies between oxide composition and proliferation (esp. Ti4+), and maturation (esp. Zr4+). The correlation reveals the negative effect of oxide thickness, esp. TiOx and TaOx on osteoblastogenesis. This study also shows that the characterisation of the chemical state and elemental electronic structure of the alloys’ surface is more predictive than physical properties, namely SFE and roughness.

View
  • THERMEC 2023 – Vienna – (July 2023)

    Members of the RIED Loughborough attended the THERMEC 2023 Conference in Vienna, Austria, a very prestigious bi-annual International Conference on “PROCESSING & MANUFACTURING OF ADVANCED MATERIALS: Processing, Fabrication, Properties, Applications”

    The work presented was on the biodegradable and bioresorbable materials for medical devices and scaffolds based on Ca-Mg-Zn chemistry for bulk metallic glasses. PhD researcher Shangmou Yang and supervisors Profs Paul Conway and Carmen Torres presented and defended the paper entitled “Can multifunctionality of bioresorbable BMGs be tuned by controlling crystallinity?” during the session ‘Metallic Glasses 3’ chaired by one of them most eminent and internationally respected experts in bulk metallic glasses, Prof Jürgen Eckert, from Montanuniversität Leoben & Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Leoben (Austria).

    Shangmou presenting at THERMEC 2023

    Shangmou presenting at THERMEC 2023

    It was Shangmou’s first international experience presenting his work; he was well prepared and did a very good job in front of scientists from all over the world who are also working on that alloy system. This work is co-sponsored by Alloyed Ltd, the Wolfson School of Mechanical, Electrical and Mechanical Engineering and EPSRC Programme Grant ‘RIED’.

    Shangmou happy (and relieved!) after his presentation

    And to make it even more special…

    The RIED-Wien local team came to support us and boost our mood!

    We met with Dr Vincent McKenna, RIED alumnus, who now resides in Vienna. It was a fabulous occasion, and we spent a lovely time with him there, celebrating how well he is doing in the city he now calls home. We are already looking forward to meeting him again (here in the UK or in Wien!)

    Shangmou, Vincent, Carmen and Paul at the Belvedere Palace gardens, in Vienna

    Shangmou, Vincent, Carmen and Paul at the Belvedere Palace gardens, in Vienna

View